This ring-shaped device transforms the human body into a biological battery

By portal-3

Este dispositivo en forma de anillo transforma el cuerpo humano en una batería biológica

Stretchy enough to be worn as a ring, bracelet or any other accessory that touches the skin, this new low-cost wearable device transforms the human body into a biological battery.

Has been developed by researchers at the University of Colorado at Boulder, and can generate about 1 volt of energy for every square centimeter of skin space.

Polyimine: an elastic material

The secret of its elasticity and ease of repair is in its base material: an elastic material called polyimine. If it breaks, for example, you can put the broken ends together and they will seal again in just a few minutes.

This also allows it to be completely recyclable, making it a cleaner alternative to traditional electronic devices: in a special solution that will separate the electronic components and dissolve the polyimine base; Each and every one of those ingredients can be reused.

Although the voltage it provides is very low, it could be enough to power electronic devices such as watches or activity bracelets.

It also takes advantage of a person's natural heat, using thermoelectric generators. to convert internal body temperature into electricity.


The news

This ring-shaped device transforms the human body into a biological battery

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

We can now hear the oldest wind instrument sound: 18,000 years old

By portal-3

Ya podemos escuchar sonaba el instrumento de viento más antiguo: 18.000 años

The Marsoulas conch It is the oldest wind instrument of its kind. This large ornate seashell was discovered in the Marsoulas Cave, between Haute-Garonne and Ariège, in 1897.

According to carbon 14 dating of the cave, carried out on a piece of charcoal and a fragment of bear bone from the same archaeological level as the shell, it gave a date of around 18,000 years. And now we can hear what it sounded like.

symbolic object

The shell has been decorated with a red pigment (hematite), characteristic of the Marsoulas Cave, which indicates its status as a symbolic object. The tip of the shell is not accidentally broken, forming an opening 3.5 centimeters in diameter. Since the opening was irregular and covered by an organic coating, the researchers assume that it also carried a mouthpiece.

To find out what this instrument could sound like, researchers from the National Center for Scientific Research (CNRS), the Toulouse Museum, the Toulouse-Jean Jaurès University and the Musée du quai Branly-Jacques-Chirac hired a trumpeter who managed to do ring three sounds with it close to the notes C, C sharp and D. It you can listen below:

To date, flutes have only been discovered in earlier contexts of the European Upper Paleolithic and the conch shells found outside Europe are much more recent.

Here you have the 3D model of the shell to explore it at your leisure:

<p style="font-size: 13px; font-weight: normal; margin: 5px; color: #4A4A4A;">
    <a href="https://sketchfab.com/3d-models/triton-700k-0bddff3405144c7b8f91f902e28bcc9b?utm_medium=embed&utm_source=website&utm_campaign=share-popup" target="_blank" style="font-weight: bold; color: #1CAAD9;">Triton 700k</a>
    by <a href="https://sketchfab.com/Frannd31?utm_medium=embed&utm_source=website&utm_campaign=share-popup" target="_blank" style="font-weight: bold; color: #1CAAD9;">Frannd31</a>
    on <a href="https://sketchfab.com?utm_medium=embed&utm_source=website&utm_campaign=share-popup" target="_blank" style="font-weight: bold; color: #1CAAD9;">sketchfab</a>
</p>


The news

We can now hear the oldest wind instrument sound: 18,000 years old

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

Why were Europeans the ones who brought so many diseases to America and didn't the other way around?

By portal-3

¿Por qué fueron los europeos los que llevaron tantas enfermedades a América y no pasó a la inversa?

The Old World transported a large number of diseases to the New World, but disease transmission was not bilateral. At least not in the same proportion (it is still debated whether syphilis, for example, came from America to Europe).

The fundamental reason for this asymmetry, however, lies in a factor that apparently could seem natural, ecological or even flower power: animals.

Domestication and zoonotic diseases

Most Old World diseases originated in animal livestock, especially domesticated animal farms. that were not present in America.

The Native Americans hardly had domesticated farm animals, and therefore there were not many zoonotic diseases (those spread by close contact between animals and humans). As explained Jeffrey D. Sachs in his book The ages of globalization:

The list of diseases that arrived from Europe was long and deadly, and included smallpox, influenza, typhus, measles, diphtheria, and whooping cough. Smallpox was the great mass murderer: it wiped out an alarming proportion of the native populations that encountered the newly arrived Europeans.

The exchange between the Old and New Worlds was very fruitful regarding agricultural products: America provided Europe with corn, potatoes and tomatoes; Europe provided America with wheat and rice. Sheep, goats and pigs also arrived there. And addictive products also flowed bidirectionally: tobacco or sugar cane. But the diseases were much more prevalent in the New World. simply because the natives were not so accustomed to domesticated animals.


The news

Why were Europeans the ones who brought so many diseases to America and didn't the other way around?

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

For the first time, deepfake detectors can now be fooled and that is a problem

By portal-3

Por primera vez, los detectores de deepfakes ya pueden ser engañados y eso es un problema

Systems designed to detect deepfakes (videos that manipulate real-life images through artificial intelligence) they can be fooled, as this study suggests.

Researchers have shown that detectors can be defeated by inserting adversarial examples into each video frame. Adversarial examples are slightly manipulated inputs that cause AI systems, such as machine learning models, to make an error.

Attacking blind spots

In deepfakes, a subject's face is modified to create realistic and convincing images of events that never happened. As a result, typical deepfake detectors focus on the face in the videos: first they track it and then pass the data from the cropped face to a neural network that determines if it is real or fake.

For example, the blinking of the eyes It doesn't play well in deepfakes, so detectors focus on eye movements as a way to detect that the video is fake.

However, if the creators of a fake video have some knowledge of the detection system, they can design inputs to target the detector's blind spots and avoid it.

The researchers created a confrontation example for each face in a video frame.. But while standard operations, such as compressing and resizing a video, typically remove adversarial examples from an image, these examples are designed to resist these processes. The attack algorithm does this by estimating over a set of input transformations how the model classifies images as real or fake. The modified version of the face is then inserted into all video frames. The process is then repeated for all frames of the video to create a deepfake video.

To improve the detectors, the researchers recommend an approach similar to what is known as Adversarial Machine Learning o adversarial training: during training, an adaptive adversary continues to generate new deepfakes that can bypass the current state-of-the-art detector; and the detector continues to improve to detect new deepfakes.


The news

For the first time, deepfake detectors can now be fooled and that is a problem

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

This planetoid that orbits our sun has become the most distant we know: it is 4 times farther than Pluto

By portal-3

Este planetoide que orbita nuestro sol se ha convertido en el más distante que conocemos: está 4 veces más lejos que Plutón

It has been confirmed that a planetoid, nicknamed "Farfarout", which It was first detected in 2018, It has become the most distant object orbiting our Sun.

The Minor Planet Center now has given him the official designation of 2018 AG37. It will receive an official name after its orbit is better determined in the coming years.

Farfarout

Farfarout's average distance from the Sun is 132 astronomical units (au); 1 au is the distance between the Earth and the Sun. For comparison, Pluto is only 39 au units from the Sun.

Farfarout's journey around the Sun takes about a thousand years, crossing the orbit of the huge planet Neptune each time.

Farfarout is very faint and, based on its brightness and distance from the Sun, the team estimates its size to be about 400 kilometers across. As explained Chad Trujillo, astronomer at the University of Arizona:

Farfarout's orbital dynamics can help us understand how Neptune formed and evolved, as Farfarout was likely thrown into the outer solar system by getting too close to Neptune in the distant past. Farfarout is likely to interact strongly with Neptune again as their orbits continue to cross.


The news

This planetoid that orbits our sun has become the most distant we know: it is 4 times farther than Pluto

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

New system to print custom-made functional drones and robots, without human intervention

By portal-3

Nuevo sistema para imprimir drones y robots funcionales hechos a medida, sin intervención humana

A group from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) has recently developed a new system to print custom-made functional devices and robots, without human intervention.

Its unique system uses a three-ingredient recipe that allows users to create structural geometry, print strokes, and assemble electronic components such as sensors and actuators.

LaserFactory

LaserFactory, as the system has been named, has two parts that work in harmony: a set of software tools that allows users to design custom devices and a hardware platform that manufactures them.

Like a chef, LaserFactory automatically cuts geometry, dispenses silver for circuit traces, selects and places components, and finally cures the silver to make traces conductive, securing components in place to complete manufacturing.

One of the developers, Martin Nisser, notes that this type of 'one-stop shop' could be beneficial for product developers, manufacturers, researchers and educators looking to quickly prototype things like wearable devices, robots and printed electronics.

Making manufacturing affordable, fast, and accessible to a layman remains a challenge. By leveraging widely available manufacturing platforms such as 3D printers and laser cutters, LaserFactory is the first system to integrate these capabilities and automate the entire line to manufacture functional devices in one system.


The news

New system to print custom-made functional drones and robots, without human intervention

was originally published in

Xataka Science

by
Sergio Parra

.

Read More

Ayuno intermitente: en qué consiste esta estrategia para perder peso y qué dice la ciencia al respecto

By portal-3

Ayuno intermitente: en qué consiste esta estrategia para perder peso y qué dice la ciencia al respecto

Según los últimos y más importantes metaanálisis, el ayuno es una herramienta muy útil en nutrición. Bajo esta premisa aparecen estrategias dietéticas como el ayuno intermitente. Vamos a ver en qué consiste y qué dice la ciencia sobre ello.

El ayuno tiene aval científico

El mito de que es más sano comer cinco veces al día está muy extendido. Este se basa en una idea equivocada de que no pasar hambre es más saludable, ya que no obliga al cuerpo a «guardar reservas». Sin embargo, nada avala este concepto. Más bien al contrario. Un reciente metaanálisis, que analiza gran parte de la literatura científica publicada sobre el tema hasta la fecha, indicaba que el número de ingestas no tiene ningún beneficio.

Sin embargo, reducir las comidas y dejar un espacio de varias horas entre ellas (en otras palabras, ayunar) sí. Esta revisión analiza varios sistemas de ayuno y las evidencias que los sustentan. Las conclusiones a las que llega son que la restricción calórica temporal ayuda a reducir los factores de riesgo de varias enfermedades, entre las que se incluyen el síndrome metabólico, las enfermedades cardiovasculares, el cáncer e, incluso, las enfermedades neurodegenerativas.

Otros estudios también apuntan a que reducir el tiempo de ingesta, y espaciar entre comidas, ayuda a reducir la grasa corporal, aumentar la cantidad de masa magra (músculo), reducir la edad metabólica y hasta ayudar a la neuroplasticidad. Todos estos resultados son acordes con las conclusiones del metaanálisis que mencionábamos, aunque este se centra más en enfermedades vasculares y metabólicas en adultos. A pesar de la creciente cantidad de información sobre el ayuno, casi todos los estudios coinciden en que hace falta más información.

Muchos de los mecanismos metabólicos todavía no se conocen, aunque se haya probado su relación. Aunque cada vez hay más información clínica, muchos estudios todavía se basan, solamente, en estudios con modelos animales. Todas estas razones, aunque no minan la evidencia existente, son un indicativo de que hace falta seguir comprendiendo mejor el ayuno y los porqués de sus beneficios, a nivel fisiológico.

¿Cómo funciona el ayuno intermitente?

A partir de las evidencias sobre el ayuno, algunos expertos en nutrición y preparación deportiva diseñan estrategias para aprovechar sus beneficios. El ayuno intermitente, o Intermittent Fasting (IF), consiste en alternar periodos sin comer con periodos de ingesta en tiempos concretos. Los más conocidos son el ayuno 16/8, 24 y 48, pero no son los únicos.

Con estas cifras se hace referencia al tiempo entre ingestas. Así, el ayuno 16/8 consiste en realizar periodos de ayuno de 16 horas, seguido de periodos en los que podemos comer normalmente durante ocho horas. Si, por ejemplo, realizamos la primera comida a las 14:00h, podemos comer hasta las 22:00h, durante 8 horas. A partir de entonces, nos mantendríamos en ayuno hasta las 14:00 del día siguiente, 16 horas después. Se puede comer normalmente y todas las veces que se quiera durante estas ocho horas de ingesta, aunque esto aumenta el riesgo de comer más calorías de las que comeríamos en una sola comida.

Es necesario aclarar que el periodo de ingesta no es sinónimo de tener carta blanca para comer cualquier cosa y de cualquier manera. Si queremos perder peso, habrá que conservar una dieta hipocalórica. Esta debe estar bien estructurada nutricionalmente hablando, para evitar problemas de malnutrición. Lo ideal es basar nuestra alimentación en alimentos saludables y no en productos ultraprocesados, que contienen un pobre valor nutricional.

Para los ayunos diarios, la estrategia consiste en comer durante 24 horas, ayunar otras 24, etc. En definitiva, según los resultados del metaanálisis que comentábamos, lo importante es consumir casi toda la dieta en un periodo corto del día, de entre 4 y 12 horas. No es necesario reducir la cantidad de calorías que comemos, aunque es imprescindible comer sano, por supuesto.

Esto supone ayunar durante 12 o 20 horas seguidas, que es el periodo analizado que más beneficios representa, según los estudios. Por ejemplo, podríamos comer durante 12 horas y ayunar durante otras 12 adelantando la cena y retrasando el desayuno. Los investigadores concluyen que dejar de comer entre estas 12 y 20 horas puede ayudar a mejorar el peso corporal, la composición grasa y muscular así como reducir varios procesos asociados con la enfermedad.

La importancia del ritmo circadiano

Cuando hablamos de «ayuno intermitente» parece que estamos encasillando, inintencionadamente a esta estrategia como una moda dietética más. Sin embargo, lo cierto es que existe otra interpretación útil a su validez. Esta está relacionada con nuestro ritmo circadiano. El ritmo circadiano es esa especie de reloj interno que controla tu ritmo biológico.

Los ritmos circadianos controlan nuestro metabolismo mediante la segregación de melatonina y una cascada de señales fisiológicas. A su vez, estos ritmos están controlados por la luz, principalmente, aunque otros factores también influyen, como es la alimentación. Evolutivamente hablando, el ser humano no ha tenido disponibilidad de comer a todas horas hasta hace relativamente poco.

ayuno

Nuestros ritmos circadianos, en cierta manera, están condicionados por los ancestrales patrones de caza y recolección (o al revés, probablemente). La cuestión es que, a día de hoy, estos ritmos se adaptan mejor a un patrón dietético de ayuno intermitente, en el que solo se come una o dos veces al día, con un largo periodo sin ingesta, de actividad, que a estar comiendo todo el día.

Esta es una razón más, en las que el ayuno encaja en un hábito de vida saludable. ¿Quiere decir esto que hay que ayunar? Por supuesto que no. Lo importante, como cualquier experto en nutrición recomienda a día de hoy, es mantener una serie de hábitos saludables que consideren una alimentación más sana, actividad física y moderación.

Imagen | Unsplash


The news

Ayuno intermitente: en qué consiste esta estrategia para perder peso y qué dice la ciencia al respecto

was originally published in

Xataka Science

by
Santiago Campillo

.

Read More